Introduction: Many predictive models for incident type 2 diabetes (T2D) exist, but these models are not used frequently for public health management. Barriers to their application include (1) the problem of model choice (some models are applicable only to certain ethnic groups), (2) missing input variables, and (3) the lack of calibration. While (1) and (2) drives to missing predictions, (3) causes inaccurate incidence predictions. In this paper, a combined T2D risk model for public health management that addresses these three issues is developed.

Research Design And Methods: The combined T2D risk model combines eight existing predictive models by weighted average to overcome the problem of missing incidence predictions. Moreover, the combined model implements a simple recalibration strategy in which the risk scores are rescaled based on the T2D incidence in the target population. The performance of the combined model was compared with that of the eight existing models using data from two test datasets extracted from the Multi-Ethnic Study of Atherosclerosis (MESA; n=1031) and the English Longitudinal Study of Ageing (ELSA; n=4820). Metrics of discrimination, calibration, and missing incidence predictions were used for the assessment.

Results: The combined T2D model performed well in terms of both discrimination (concordance index: 0.83 on MESA; 0.77 on ELSA) and calibration (expected to observed event ratio: 1.00 on MESA; 1.17 on ELSA), similarly to the best-performing existing models. However, while the existing models yielded a large percentage of missing predictions (17%-45% on MESA; 63%-64% on ELSA), this was negligible with the combined model (0% on MESA, 4% on ELSA).

Conclusions: Leveraging on existing literature T2D predictive models, a simple approach based on risk score rescaling and averaging was shown to provide accurate and robust incidence predictions, overcoming the problem of recalibration and missing predictions in practical application of predictive models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398107PMC
http://dx.doi.org/10.1136/bmjdrc-2020-001223DOI Listing

Publication Analysis

Top Keywords

predictive models
20
combined model
16
incidence predictions
16
public health
12
health management
12
missing predictions
12
combined t2d
12
existing models
12
models
10
model
8

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Visibility, Physical Work Environment, and Stress in ICU Nurses.

J Nurs Adm

December 2024

Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.

Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.

Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.

Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.

View Article and Find Full Text PDF

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Geometrically modulated contact forces enable hula hoop levitation.

Proc Natl Acad Sci U S A

January 2025

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.

Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!