Amylose, as a linear biopolymer, tends to form helical inclusion complexes with suitable guest species. This is of great importance for a variety of applications, especially in the pharmaceutical and food industry. In this study, we propose an approach for the preparation of a novel inclusion complex with switchable surface hydrophilicity. For this purpose, amylose was first conjugated to ethylene diamine hydrophilic residues. Then, the short chains of the hydrophobic poly(methyl methacrylate, PMMA) were grafted onto the cavity of amylose through atom transfer radical polymerization (ATRP). According to CD spectroscopy results, the amylose-PMMA inclusion complexes displayed solvent-directed helical chirality inversion using either DMSO or water as a solvent. Fluorescence imaging, AFM and DLS techniques revealed the solvent-dependent surface hydrophilicity of the amylose-PMMA inclusion complex. Interestingly, its morphological studies displayed a central cavity, which makes it suitable for carrying cargoes in drug delivery applications. Obtaining the amylose-polymer inclusion complexes with tailorable hydrophilicity of both the exterior surface and the interior cavity can be of paramount importance for a wide variety of bio-applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.116662 | DOI Listing |
J Craniofac Surg
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University.
Background: This paper presents the authors' team's research on a craniofacial surgical robot developed in China. Initiated in 2011 with government funding, the craniofacial surgical robot project was officially launched in Shanghai, developed jointly by the Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine and the Shanghai Jiao Tong University medical-engineering team. Currently, based on multiple rounds of model surgeries, animal experiments, and clinical trials, our team is applying for approval as a Class III medical device from the National Medical Products Administration (NMPA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFJ Prim Care Community Health
January 2025
University of Rochester, Rochester, NY, USA.
Community Health Workers (CHWs) are members of healthcare teams that are integrated in, and often share language, beliefs, and lived experiences with their communities. They use their formal and informal social networks to promote healthy behavior, to connect community members to resources, and to build more resilient community networks. We propose a framework to conceptualize CHW interventions aiming to operationalize and optimize CHW social relations and networks.
View Article and Find Full Text PDFJ Orthop Trauma
January 2025
Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.
Objectives: The 22-modifier in the Current Procedural Terminology (CPT) system indicates increased surgical procedure complexity, aiming to secure greater reimbursement for surgeons. This study investigated the 22-modifier on reimbursement amounts after acetabular fracture fixation.
Methods: Design: Retrospective cohort study.
Healthcare (Basel)
December 2024
Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland.
Dissocial personality is understood as a personality that does not ideologize most social norms and is characterized by a lack of empathy. Precise criteria for diagnosing dissocial personality are included in the ICD-10 classification, which is still in force in Poland. This classification is widely available in both Polish and English.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!