A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. | LitMetric

Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma.

Carbohydr Polym

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Published: October 2020

Microneedles (MNs) technology has many advantages and is an ideal local transdermal drug delivery method. Here we synthesized photocrosslinkable dextran methacrylate (DexMA), and its degree of substitution is 5 % higher than the previous method. We used DexMA hydrogel for the first time to develop a new type of MNs for continuous transdermal administration. The prepared hydrogel MNs can successfully penetrate the epidermal layer and achieve sustained drug release. Doxorubicin (DOX) and trametinib (Tra) are anticancer drugs approved by FDA. Besides, Tra can also reverse P-gp-mediated multidrug resistance (MDR) to effectively block the efflux of DOX by P-gp. We used MNs to simultaneously load Tra and DOX, and achieved synergy in a B16 cell xenograft nude mouse model. The DexMA hydrogel MNs developed in this study can be used to enhance the transdermal delivery of small molecule drugs and reduce systemic toxicity and side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116650DOI Listing

Publication Analysis

Top Keywords

dextran methacrylate
8
continuous transdermal
8
transdermal administration
8
dexma hydrogel
8
hydrogel mns
8
mns
5
hydrogel
4
methacrylate hydrogel
4
hydrogel microneedles
4
microneedles loaded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!