Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367010PMC
http://dx.doi.org/10.1016/j.jcct.2020.07.002DOI Listing

Publication Analysis

Top Keywords

myocardial injury
4
injury covid-19
4
covid-19 role
4
role coronary
4
coronary computed
4
computed tomography
4
tomography angiography
4
angiography cta
4
myocardial
1
covid-19
1

Similar Publications

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown benefits in improving cardiovascular (CV) outcomes in patients with heart failure (HF) and may mitigate symptom progression in myocardial infarction (MI). However, their effectiveness in patients with type 2 diabetes and MI undergoing percutaneous coronary intervention (PCI) is unclear.

Methods: To identify eligible studies, a comprehensive search of electronic databases, PubMed, Cochrane Library, Scopus and Embase, was conducted from inception until May 2024.

View Article and Find Full Text PDF

Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality. Extracellular vesicles (EVs) derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties, which are enhanced by γ-aminobutyric acid. The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p, which is a target for thioredoxin-interacting protein, regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.

View Article and Find Full Text PDF

Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.

Regen Biomater

December 2024

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.

Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion (I/R) injury, which is associated with high morbidity and mortality, is a main cause of unexpected myocardial injury after acute myocardial infarction. However, the underlying mechanism remains unclear. Circular RNAs (circRNAs), which are formed from protein-coding genes, can sequester microRNAs or proteins, modulate transcription and interfere with splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!