The purpose of the present study was to evaluate the effects of season on the in vitro fertilizing ability of bovine spermatozoa and subsequent embryo development. Bovine oocytes were matured and fertilized in vitro with Holstein dairy bull sperm cells collected and frozen in different seasons (winter, spring, and summer). On d 2 and 8 postinsemination, cleavage and blastocyst rates, respectively, were recorded; the blastocysts were graded for morphology. The number of sperm cells binding to the zona pellucida of oocytes, together with the number of nuclei in the developing blastocysts, were assessed after staining with Hoechst. No significant differences were observed among seasons in cleavage and embryo development rate. However, the proportion of "advanced blastocysts" was significantly higher in spring compared with winter and summer, with a corresponding decrease in the proportion of early blastocysts in spring compared with winter and summer. The number of sperm cells binding per oocyte was significantly lower in the oocytes inseminated with sperm samples collected in summer compared with winter or spring. Moreover, a significant interaction was observed in the number of sperm cells binding per oocyte between bull and season. Although no significant differences were observed among seasons in the number of nuclei per blastocyst, a significant interaction was observed between bull and season for this variable. Embryo development rate in in vitro fertilization appeared to be affected by season of semen collection, with sperm samples collected in spring being associated with a higher proportion of advanced blastocysts and better morphology than those collected at other times of the year.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2020-18472DOI Listing

Publication Analysis

Top Keywords

sperm cells
16
embryo development
12
number sperm
12
cells binding
12
compared winter
12
season vitro
8
vitro fertilizing
8
fertilizing ability
8
bovine spermatozoa
8
winter spring
8

Similar Publications

Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).

View Article and Find Full Text PDF

One in five couples who wish to conceive is infertile, and half of these couples have male infertility. However, the causes of male infertility are still largely unknown. Creatine is stored in the body as an energy buffer, and the testes are its second-largest reservoir after muscles.

View Article and Find Full Text PDF

Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture.

Vet Sci

December 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.

The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Characterisation and hierarchy of the spermatogonial stem cell compartment in human spermatogenesis by spectral cytometry using a 16-colors panel.

Cell Mol Life Sci

December 2024

Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France.

About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!