Detection and classification of adventitious acoustic lung sounds plays an important role in diagnosing, monitoring, controlling and, caring the patients with lung diseases. Such systems can be presented as different platforms like medical devices, standalone software or smartphone application. Ubiquity of smartphones and widespread use of the corresponding applications make such a device an attractive platform for hosting the detection and classification systems for adventitious lung sounds. In this paper, the smartphone-based systems for automatic detection and classification of the adventitious lung sounds are surveyed. Such adventitious sounds include cough, wheeze, crackle and, snore. Relevant sounds related to abnormal respiratory activities are considered as well. The methods are shortly described and the analyzing algorithms are explained. The analysis includes detection and/or classification of the sound events. A summary of the main surveyed methods together with the classification parameters and used features for the sake of comparison is given. Existing challenges, open issues and future trends will be discussed as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/RBME.2020.3002970 | DOI Listing |
Biomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Background: Despite the ample benefits of physical activity (PA), many individuals do not meet the minimum PA recommended by health organizations. Structured questionnaires and interviews are commonly used to study why individuals perform PA and their strategies to adhere to PA. However, certain biases are inherent to these tools that limit what can be concluded from their results.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Horticultural Science, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
Staphylococcus pseudintermedius is a global animal pathogen. Traditional identification methods are time-consuming necessitating a more efficient approach. This study validated and enhanced the loop-mediated isothermal amplification (LAMP) technique by integration it with a lateral flow dipstick (LFD) assay for the detection of S.
View Article and Find Full Text PDFAnesthesiology
January 2025
Division of Anesthesia, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
Background: Effective pain recognition and treatment in perioperative environments reduce length of stay and decrease risk of delirium and chronic pain. We sought to develop and validate preliminary computer vision-based approaches for nociception detection in hospitalized patients.
Methods: Prospective observational cohort study using red-green-blue camera detection of perioperative patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!