In this work, a dual-mode stimulus chip with a built-in high voltage generator was proposed to offer a broad-range current or voltage stimulus patterns for biomedical applications. With an on-chip and built-in high voltage generator, this stimulus chip could generate the required high voltage supply without additional supply voltage. With a nearly 20 V operating voltage, the overstress and reliability issues of the stimulus circuits were thoroughly considered and carefully addressed in this work. This stimulus system only requires an area of 0.22 mm per single channel and is fully on-chip implemented without any additional external components. The dual-mode stimulus chip was fabricated in a 0.25-μm 2.5V/5V/12V CMOS (complementary metal-oxide-semiconductor) process, which can generate the biphasic current or voltage stimulus pulses. The current level of stimulus is up to 5 mA, and the voltage level of stimulus can be up to 10 V. Moreover, this chip has been successfully applied to stimulate a guinea pig in an animal experiment. The proposed dual-mode stimulus system has been verified in electrical tests and also demonstrated its stimulation function in animal experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2020.2999398DOI Listing

Publication Analysis

Top Keywords

stimulus chip
20
dual-mode stimulus
16
high voltage
16
built-in high
12
voltage generator
12
stimulus
11
voltage
9
chip built-in
8
biomedical applications
8
current voltage
8

Similar Publications

Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential.

View Article and Find Full Text PDF

A multi-functional platform for stimulating and recording electrical responses of SH-SY5Y cells.

Anal Methods

January 2025

International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.

In recent years, multifunctional cell regulation on a single chip has become an imperative need for cell research. In this study, a novel multi-functional micro-platform integrating wireless electrical stimulation, mechanical stimulation and electrical response recording of cells was proposed. Controlling cell fate by photoexcited radio stimulation of cells on photosensitive films can precisely orchestrate biological activities.

View Article and Find Full Text PDF

The risk of contamination is expanding with global warming. Targeting the pathogenicity of at its source and diminishing its colonization within the host may be a potential control strategy. Oxidative stress transcription factor AtfA plays a pivotal role in pathogenicity by combating reactive oxygen species (ROS) generated by host immune cells.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a leading cause of vision loss in aging populations. A better understanding of the mechanisms of the disease, especially at early stages, could elucidate new treatment targets. One characteristic of AMD is strain on the retinal pigment epithelium (RPE), a crucial layer of the retina.

View Article and Find Full Text PDF

Trained innate immunity in response to nuclear antigens in systemic lupus erythematosus.

J Autoimmun

December 2024

Department of Nephrology, Radboud Research Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands; Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

Systemic lupus erythematosus (SLE) is an autoimmune disease directed against nuclear antigens, including those derived from apoptotic microparticles (MPs) and neutrophil extracellular traps (NETs). Here we investigated whether nuclear autoantigens can induce trained immunity in SLE patients. Trained immunity is a de facto innate immune memory elicited by an initial stimulus that induces a more vigorous long-term inflammatory response to subsequent stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!