Selecting actuators for assistive exoskeletons involves decisions in which designers usually face contrasting requirements. While certain choices may depend on the application context or design philosophy, it is generally desirable to avoid oversizing actuators in order to obtain more lightweight and transparent systems, ultimately promoting the adoption of a given device. In many cases, the torque and power requirements can be relaxed by exploiting the contribution of an elastic element acting in mechanical parallel. This contribution considers one such case and introduces a methodology for the evaluation of different actuator choices resulting from the combination of different motors, reduction gears, and parallel stiffness profiles, helping to match actuator capabilities to the task requirements. Such methodology is based on a graphical tool showing how different design choices affect the actuator as a whole. To illustrate the approach, a back-support exoskeleton for lifting tasks is considered as a case study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2020.3010829 | DOI Listing |
J Orthop
July 2025
Baylor University Medical Center, Department of Orthopaedics, Dallas, TX, USA.
Objective: To perform a systematic review of the utility of exoskeleton robotic therapy on lower extremity recovery in Spinal Cord Injury (SCI) patients.
Methods: We used the Embase, Cochrane, and PubMed databases and searched from to December 2023 for studies on exoskeleton robotic assist devices used in working with SCI patients. Only articles published in English were evaluated, and the retrieved articles were screened via our inclusion/exclusion criteria.
J Neuroeng Rehabil
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.
View Article and Find Full Text PDFSci Adv
December 2024
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
Tissue imaging is usually captured by hospital-based nuclear magnetic resonance. Here, we present a wearable triboelectric impedance tomography (TIT) system for noninvasive imaging of various biological tissues. The imaging mechanism relies on the obtained impedance information from the different soft human tissues.
View Article and Find Full Text PDFFront Pediatr
December 2024
Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy.
Cerebral Palsy (CP) is a leading cause of childhood motor disability, making independent walking a crucial therapeutic goal. Robotic assistive devices offer potential to enhance mobility, promoting community engagement and quality of life. This is an observational report of 22 cases of children with CP in which we evaluated the Moonwalker exoskeleton (a dynamic moving aid system) usability, functional changes, and caregivers' perspectives based on the International Classification of Functioning (ICF).
View Article and Find Full Text PDFSci Adv
December 2024
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Exoskeletons offer promising solutions for improving human mobility, but a key challenge is ensuring the controller adapts to changing walking conditions. We present an artificial intelligence (AI)-driven universal exoskeleton system that dynamically switches assistance types between walking modes, modulates assistance levels corresponding to the ground slope, and delivers assistance timely based on the current gait phase in real-time. During treadmill validation, AI-based assistance reduced metabolic cost by 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!