Individuals with chronic hemiparesis post-stroke exhibit gait impairments that require functional rehabilitation through training. Exoskeletal robotic assistive devices can provide a user with continuous assistance but impose movement restrictions. There are currently devices that allow unrestricted movement but provide assistance only intermittently at specific points of the gait cycle. Our design, a cable-driven active leg exoskeleton (C-ALEX), allows the user both unrestricted movement and continuous force assistance throughout the gait cycle to assist the user in new walking patterns. In this study, we assessed the ability of C-ALEX to induce a change in the walking patterns of ten post-stroke participants using a single-session training protocol. The ability of C-ALEX to accurately provide forces and torques in the desired directions was also evaluated to compare its design performance to traditional rigid-link designs. Participants were able to reach 91% ± 12% of their target step length and 89% ± 13% of their target step height. The achieved step parameters differed significantly from participant baselines ( ). To quantify the performance, the forces in each cable's out of the plane movements were evaluated relative to the in-plane desired cable tension magnitudes. This corresponded to an error of under 2Nm in the desired controlled joint torques. This error magnitude is low compared to the system command torques and typical adult biological torques during walking (2-4%). These results point to the utility of using non-restrictive cable-driven architectures in gait retraining, in which future focus can be on rehabilitating gait pathologies seen in stroke survivors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2020.3009317 | DOI Listing |
Wearable Technol
December 2024
Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.
View Article and Find Full Text PDFInt J Med Robot
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.
Background: Cable-driven continuum manipulators (CDCMs) enable scar-free procedures but face limitations in workspace and control accuracy due to hysteresis.
Methods: We introduce an extensible CDCM with a semi-active mechanism (SAM) and develop a real-time hysteresis compensation control algorithm using a temporal convolution network (TCN) based on data collected from fiducial markers and RGBD sensing.
Results: Performance validation shows the proposed controller significantly reduces hysteresis by up to 69.
J Neurophysiol
November 2024
Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States.
Shoulder exosuits are a promising new technology that could enable individuals with neuromuscular impairments to independently perform activities of daily living, however, scarce evidence exists to evaluate their ability to support such activities. Consequently, it is not understood how humans adapt motion in response to assistance from a shoulder exosuit. In this study, we developed a cable-driven shoulder exosuit and evaluated its effect on reaching and drinking tasks within a cohort of 18 healthy subjects to quantify changes to muscle activity and kinematics as well as trial-to-trial learning in duration and actuator switch timing.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Mechanical and Industrial Engineering, Northeastern University, 815 Columbus Ave, Boston, MA, 02120, USA.
Foams are versatile by nature and ubiquitous in a wide range of applications, including padding, insulation, and acoustic dampening. Previous work established that foams 3D printed via Viscous Thread Printing (VTP) can in principle combine the flexibility of 3D printing with the mechanical properties of conventional foams. However, the generality of prior work is limited due to the lack of predictable process-property relationships.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Graduate School of Biomedical Engineering, Faculty of Engineering and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.
Flexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human-machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!