This work proposes a novel shape-driven reconstruction approach for difference electrical impedance tomography (EIT). In the proposed approach, the reconstruction problem is formulated as a shape reconstruction problem and solved via an explicit and geometrical methodology, where the geometry of the embedded inclusions is represented by a shape and topology description function (STDF). To incorporate more geometry and prior information directly into the reconstruction and to provide better flexibility in the solution process, the concept of a moving morphable component (MMC) is applied here implying that MMC is treated as the basic building block of the embedded inclusions. Simulations, phantom studies, and in vivo pig data are used to test the proposed approach for the most popular biomedical application of EIT - lung imaging - and the performance is compared with the conventional linear approach. In addition, the modality's robustness is studied in cases where (i) modeling errors are caused by inhomogeneity in the background conductivity, and (ii) uncertainties in the contact impedances and reference state are present. The results of this work indicate that the proposed approach is tolerant to modeling errors and is fairly robust to typical EIT uncertainties, producing greatly improved image quality compared to the conventional linear approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2020.3004806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!