Despite the benefits of mammography investigations, some studies have shown that X-ray exposure from the mammography screening itself can statistically cause breast cancer in a small fraction of women. Therefore, a dose reduction in mammography is desirable. At the same time, there is a demand for a higher spatial resolution in mammographic imaging. The most promising way to achieve these goals is the use of advanced photon-processing semiconductor X-ray detectors with optimum sensor materials. This study addresses the investigation of the optimum semiconductor sensor material for mammography in combination with the photon-processing detector Medipix3RX. The influence of K-shell fluorescence from the sensor material on the achievable contrast-to-noise ratio is investigated, as well as the attenuation efficiency. The three different sensor materials, CdTe, GaAs, and Si are studied, showing advances of CdTe-sensors for mammography. Furthermore, a comparison of the contrast-to-noise ratio between a clinical Se-detector and Medipix3RX detectors with Si- and CdTe-sensors is shown using a self-produced mammography phantom that is based on real human tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3004648DOI Listing

Publication Analysis

Top Keywords

sensor materials
12
cdte gaas
8
sensor material
8
contrast-to-noise ratio
8
mammography
7
sensor
5
investigation cdte
4
gaas sensor
4
materials mammography
4
mammography despite
4

Similar Publications

Dementia Care Practice.

Alzheimers Dement

December 2024

University of Applied Arts Vienna, Vienna, Vianna, Austria.

Imagine a visit in the care taking home by the grandchild. The communication might be challanging. What if there was an option that offers a different way to interact without language? The NV23 is a table designed for non-verbal and cross generational communication.

View Article and Find Full Text PDF

Aims And Background: The golden proportion is based on the premise that there is a link between natural beauty and mathematics. The study aimed to analyze the mesiodistal width of maxillary anterior teeth in primary and permanent dentition to determine whether a golden proportion exists among them.

Materials And Methods: Sixty subjects were randomly selected in accordance with inclusion and exclusion criteria.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!