Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current decision-making for clinical intervention of abdominal aortic aneurysms (AAAs) is based on the maximum diameter of the aortic wall, but this does not provide patient-specific information on rupture risk. Ultrasound (US) imaging can assess both geometry and deformation of the aortic wall. However, low lateral contrast and resolution are currently limiting the precision of both geometry and local strain estimates. To tackle these drawbacks, a multiperspective scanning mode was developed on a dual transducer US system to perform strain imaging at high frame rates. Experimental imaging was performed on porcine aortas embedded in a phantom of the abdomen, pressurized in a mock circulation loop. US images were acquired with three acquisition schemes: Multiperspective ultrafast imaging, single perspective ultrafast imaging, and conventional line-by-line scanning. Image registration was performed by automatic detection of the transducer surfaces. Multiperspective images and axial displacements were compounded for improved segmentation and tracking of the aortic wall, respectively. Performance was compared in terms of image quality, motion tracking, and strain estimation. Multiperspective compound displacement estimation reduced the mean motion tracking error over one cardiac cycle by a factor 10 compared to conventional scanning. Resolution increased in radial and circumferential strain images, and circumferential signal-to-noise ratio (SNRe) increased by 10 dB. Radial SNRe is high in wall regions moving towards the transducer. In other regions, radial strain estimates remain cumbersome for the frequency used. In conclusion, multiperspective US imaging was demonstrated to improve motion tracking and circumferential strain estimation of porcine aortas in an experimental set-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2020.3003430 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!