A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Patient-Specific Sensor Registration for Electrical Source Imaging Using a Deformable Head Model. | LitMetric

Objective: Electrical source imaging of brain activity is most accurate when using individualized bioelectric head models. Constructing these models requires identifying electrode positions on the scalp surface. Current methods such as photogrammetry involve significant user interaction that limits integration in clinical workflows. This work introduces and validates a new, fully-automatic method for sensor registration.

Methods: Average electrode coordinates are registered to the mean scalp mesh of a shape-constrained deformable head model used for tissue segmentation. Patient-specific electrode positions can be identified on the deformed scalp surface using point-based correspondence after model adaptation.

Results: The performance of the proposed method for sensor registration is evaluated with simulated and real data. Electrode variability is quantified for a photogrammetry-based solution and compared against the proposed sensor registration.

Conclusion: A fully-automated model-based approach can identify electrode locations with similar accuracy as a current state-of-the-art photogrammetry system.

Significance: The new method for sensor registration presented in this work is rapid and fully automatic. It eliminates any user dependent inaccuracy introduced in sensor registration and ensures reproducible results. More importantly, it can more easily be integrated in clinical workflows, enabling broader adoption of electrical source imaging technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2020.3003112DOI Listing

Publication Analysis

Top Keywords

sensor registration
16
electrical source
12
source imaging
12
method sensor
12
deformable head
8
head model
8
electrode positions
8
scalp surface
8
clinical workflows
8
electrode
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!