Background: Antithrombin (AT) is the primary physiological anticoagulant of normal hemostasis. Hereditary AT deficiency, an autosomal dominant thrombotic disease caused by mutations in the AT gene (SERPINC1), is associated with venous thromboembolism.

Objective: We investigated the phenotypes, genotypes, and pathogenesis of hereditary AT deficiency in a 12-year-old boy (proband) who developed a pulmonary embolism and a subsequent deep vein thrombosis.

Methods: The AT activity and AT antigen level of the proband and his family members were measured. Mutation sites in all seven exons of SERPINC1 were identified. Analysis of conserved regions around codon 462 of the SERPINC1 gene and functional predictions were performed using bioinformatics tools.

Results: The proband, his father, and his paternal grandmother demonstrated reduced AT activity and antigen levels consistent with Type I AT deficiency. A novel heterozygous missense mutation, c.1385G>A (Cys462Tyr) was identified in all three symptomatic family members. This missense mutation causes disruption of the 279Cys-462Cys disulfide bond and leads to type Ⅰ hereditary AT deficiency.

Conclusion: A SERPINC1 missense mutation (Cys462Tyr) causing damage to the 279Cys-462Cys disulfide bond of the AT protein appears to be the cause of Type I AT deficiency in this family. These findings indicate one pathological mechanism associated with hereditary AT deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiochem.2020.07.004DOI Listing

Publication Analysis

Top Keywords

missense mutation
16
279cys-462cys disulfide
12
disulfide bond
12
hereditary deficiency
12
serpinc1 missense
8
mutation cys462tyr
8
disruption 279cys-462cys
8
bond leads
8
leads type
8
type Ⅰ
8

Similar Publications

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Background: A complex, multicellular disease with genetic and immunological elements, Alzheimer's disease (AD) affects millions worldwide. There has been previous research linking AD to the missense variants ABI3-rs616338-T and PLCG2-rs72824905-G, and the altered expression of these genes has been shown to disrupt microglial function. In our understanding of AD risk and resilience, limited research has been conducted on how these variants affect microglial subtypes and states in AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!