Defect-Selective Charge-Density-Wave Condensation in 2H-NbSe_{2}.

Phys Rev Lett

Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea and Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Published: July 2020

Defects have been known to substantially affect quantum states of materials including charge density wave (CDW). However, the microscopic mechanism of the influence of defects is often elusive due partly to the lack of atomic scale characterization of defects themselves. We investigate native defects of a prototypical CDW material 2H-NbSe_{2} and their microscopic interaction with CDW. Three prevailing types of atomic scale defects are classified by scanning tunneling microscope, and their atomic structures are identified by density functional theory calculations as Se vacancies and Nb intercalants. Above the transition temperature, two distinct CDW structures are found to be induced selectively by different types of defects. This intriguing phenomenon is explained by competing CDW ground states and local lattice strain fields induced by defects, providing a clear microscopic mechanism of the defect-CDW interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.036804DOI Listing

Publication Analysis

Top Keywords

microscopic mechanism
8
atomic scale
8
defects
7
cdw
5
defect-selective charge-density-wave
4
charge-density-wave condensation
4
condensation 2h-nbse_{2}
4
2h-nbse_{2} defects
4
defects affect
4
affect quantum
4

Similar Publications

Effects of Hydroxyapatite Additions on Alginate Gelation Kinetics During Cross-Linking.

Polymers (Basel)

January 2025

Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.

Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.

View Article and Find Full Text PDF

Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.

View Article and Find Full Text PDF

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

Ellagic Acid from and Antimalarial Activity of Korean Medicinal Plants.

Molecules

January 2025

Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.

This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.

View Article and Find Full Text PDF

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!