In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations, and random phase approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu_{2}(OH)_{3}Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic spin-1/2 chains with weak interchain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles: magnons and spinons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.037204DOI Listing

Publication Analysis

Top Keywords

magnons spinons
12
coexistence interaction
4
spinons
4
interaction spinons
4
magnons
4
spinons magnons
4
magnons antiferromagnet
4
antiferromagnet alternating
4
alternating antiferromagnetic
4
antiferromagnetic ferromagnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!