Differentiation of human pluripotent stem cells (hPSCs) into ectoderm provides neurons and glia useful for research, disease modeling, drug discovery, and potential cell therapies. In current protocols, hPSCs are traditionally differentiated into an obligate rostro-dorsal ectodermal fate expressing PAX6 after 6 to 12 days in vitro when protected from mesendoderm inducers. This rate-limiting step has performed a long-standing role in hindering the development of rapid differentiation protocols for ectoderm-derived cell types, as any protocol requires 6 to 10 days in vitro to simply initiate. Here, we report efficient differentiation of hPSCs into a naive early ectodermal intermediate within 24 hours using combined inhibition of bone morphogenic protein and fibroblast growth factor signaling. The induced population responds immediately to morphogen gradients to upregulate rostro-caudal neurodevelopmental landmark gene expression in a generally accelerated fashion. This method can serve as a new platform for the development of novel, rapid, and efficient protocols for the manufacture of hPSC-derived neural lineages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693041PMC
http://dx.doi.org/10.1002/stem.3260DOI Listing

Publication Analysis

Top Keywords

differentiation human
8
human pluripotent
8
pluripotent stem
8
stem cells
8
neural lineages
8
accelerated differentiation
4
cells neural
4
lineages early
4
early intermediate
4
intermediate ectoderm
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

This study aims to explore the measurement agreement between direct and indirect health utility measures in four chronic dermatological conditions (atopic dermatitis, hidradenitis suppurativa, pemphigus, psoriasis). Outpatients survey data collected between 2015 and 2021 were analysed. Health-related quality of life (HRQoL) outcome measures included time trade-off (TTO), EQ-5D-5L and Dermatology Life Quality Index (DLQI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!