Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An accurate and sensitive ultrasound-dispersive liquid-liquid microextraction technique followed by high-performance liquid chromatography separation coupled with electrospray ionization tandem mass spectrometry detection method to determine the presence of tetrabromobisphenol A (TBBPA) in complex environmental matrices is proposed. The miniaturized procedure was used to extract and quantify the analyte in domestic sewage, anaerobic sludge, and the aquatic test organism species Daphnia magna and Chironomus sancticaroli, which are standardized organisms for ecotoxicity bioassays. Limits of detection of 2 ng L (domestic sewage), 2 ng g (anaerobic sludge), 0.25 ng g (D. magna), and 5 ng g (C. tentans) were obtained. The presence of TBBPA was determined in domestic sewage and anaerobic sludge from an anaerobic batch bioreactor at a concentration of 0.2 ± 0.03 μg L and 507 ± 79 ng g , respectively. In D. magna and C. sancticaroli exposed to TBBPA in an acute toxicity bioassay, the micropollutant accumulated at 3.74 and 8.87 μg g , respectively. The proposed method is a simple and cost-effective tool to determine TBBPA environmental occurrence and biomagnification potential compared with conventional extraction methods. To the best of our knowledge, this is the first liquid-liquid miniaturized extraction method to be applied to D. magna and C. sancticaroli. Environ Toxicol Chem 2020;39:2147-2157. © 2020 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.4837 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!