Purpose: Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina.

Methods: C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting.

Results: When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration.

Conclusions: An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441298PMC
http://dx.doi.org/10.1167/iovs.61.10.1DOI Listing

Publication Analysis

Top Keywords

rd10 mice
24
environmental light
16
oxidative stress
16
retinal degeneration
16
light intensity
12
accelerates retinal
8
light intensities
8
stress markers
8
inflammatory cells
8
light
6

Similar Publications

Layer-specific anatomical and physiological features of the retina's neurovascular unit.

Curr Biol

January 2025

Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:

The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.

View Article and Find Full Text PDF

Background: Retinitis pigmentosa (RP), the leading cause of inherited blindness in adults, is marked by the progressive degeneration of rod photoreceptors in the retina. While gene therapy has shown promise in treating RP in patients with specific mutations, no effective therapies currently exist for the majority of patients with diverse genetic backgrounds. Additionally, no intervention can yet prevent or delay photoreceptor loss across the broader RP patient population.

View Article and Find Full Text PDF

P23H rhodopsin aggregation in the ER causes synaptic protein imbalance in rod photoreceptors.

bioRxiv

December 2024

Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States.

Rod photoreceptor neurons in the retina detect scotopic light through the visual pigment rhodopsin (Rho) in their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health. Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins.

View Article and Find Full Text PDF

Lycium barbarum L. and Salvia miltiorrhiza Bunge extract ameliorates retinitis pigmentosa in rd10 mice by affecting endoplasmic reticulum stress.

J Ethnopharmacol

January 2025

The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China. Electronic address:

Ethnopharmacological Relevance: Lycium barbarum L. and Salvia miltiorrhiza Bunge (Gouqi and Danshen, LS) have led to their inclusion in the pharmacopoeia and healthcare systems of numerous countries globally. Traditional herbs known as LS are used in China to treat retinitis pigmentosa (RP).

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the impact of a viral vector-delivered multi-characteristic opsin (MCO-010) on vision in two mouse models of retinitis pigmentosa (rp1 and rp10), focusing on both structural and functional outcomes.
  • MCO-010 was injected into the eyes of the mice, resulting in successful transduction of about 80% of bipolar cells without affecting retinal thickness, while control mice showed thinning.
  • The treatment improved behavior and visual response in the mice without causing toxicity under challenging conditions, suggesting it could help slow retinal degeneration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!