A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable supramolecular gelatin hydrogel loading of resveratrol and histatin-1 for burn wound therapy. | LitMetric

Injectable supramolecular gelatin hydrogel loading of resveratrol and histatin-1 for burn wound therapy.

Biomater Sci

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.

Published: September 2020

Prolonged inflammatory response and insufficient vascularization cause delayed and poor wound healing. In this study, we fabricated a supramolecular host-guest gelatin (HGM) hydrogel loaded with resveratrol (Res) and histatin-1 (His-1) to suppress inflammation and promote vascularization at skin burn wound sites. The HGM hydrogel showed good properties of shear-thinning and injectability, thereby allowing easy in situ injection and fast adaption to irregular wounds. Res and His-1 were demonstrated to enhance angiogenesis in vitro using cell migration and tube formation assays based on human umbilical vein endothelial cells (HUVECs). In an established rat burn wound model, HGM/Res/His-1 hydrogel treatment promoted wound healing by inhibiting expression of the pro-inflammatory factors of interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) and increasing the expression of transforming growth factor β1 (TGF-β1) and platelet endothelial cell adhesion molecule-1 (CD31). HGM/Res/His-1 hydrogel treatment showed comparable efficacy with that of the commercial dressing, Tegaderm™, and therefore shows promising potential for clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm00391cDOI Listing

Publication Analysis

Top Keywords

burn wound
12
wound healing
8
hgm hydrogel
8
hgm/res/his-1 hydrogel
8
hydrogel treatment
8
hydrogel
5
wound
5
injectable supramolecular
4
supramolecular gelatin
4
gelatin hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!