Patient-Specific Polyvinyl Alcohol Phantom Fabrication with Ultrasound and X-Ray Contrast for Brain Tumor Surgery Planning.

J Vis Exp

Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London; Department of Medical Physics and Biomedical Engineering, University College London.

Published: July 2020

AI Article Synopsis

Article Abstract

Phantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required. Therefore, a phantom was developed using real patient data as input and 3D printing of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during surgery. The phantom was successfully tested during a surgical simulation in a virtual operating room. The phantom fabrication method uses commercially available materials and is easy to reproduce. The 3D printing files can be readily shared, and the technique can be adapted to encompass many different types of tumor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610642PMC
http://dx.doi.org/10.3791/61344DOI Listing

Publication Analysis

Top Keywords

brain tumor
12
phantom
8
phantom fabrication
8
ultrasound x-ray
8
x-ray contrast
8
tumor surgery
8
anatomically accurate
8
imaging properties
8
mechanical properties
8
brain
5

Similar Publications

Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!