The restructuring and optimization of the cerebral cortex from early childhood and through adolescence is an essential feature of human brain development, underlying immense cognitive improvements. Beyond established morphometric cortical assessments, the T1w/T2w ratio quantifies partly separate biological processes, and might inform models of typical neurocognitive development and developmental psychopathology. In the present study, we computed vertex-wise T1w/T2w ratio across the cortical surface in 621 youths (3-21 years) sampled from the Pediatric Imaging, Neurocognition, and Genetics (PING) study and tested for associations with individual differences in age, sex, and both general and specific cognitive abilities. The results showed a near global linear age-related increase in T1w/T2w ratio across the brain surface, with a general posterior to anterior increasing gradient in association strength. Moreover, results indicated that boys in late adolescence had regionally higher T1w/T2w ratio as compared to girls. Across individuals, T1w/T2w ratio was negatively associated with general and several specific cognitive abilities mainly within anterior cortical regions. Our study indicates age-related differences in T1w/T2w ratio throughout childhood, adolescence, and young adulthood, in line with the known protracted myelination of the cortex. Moreover, the study supports T1w/T2w ratio as a promising surrogate measure of individual differences in intracortical brain structure in neurodevelopment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555087 | PMC |
http://dx.doi.org/10.1002/hbm.25149 | DOI Listing |
Tomography
January 2025
Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan.
Although multiple magnetic resonance imaging (MRI) indices are known to be sensitive to the noninvasive assessment of myelin integrity, their relative sensitivities have not been directly compared. This study aimed to identify the most sensitive MRI index for characterizing myelin composition in the spinal cord's gray matter (GM) and white matter (WM). MRI was performed on a deer's ex vivo cervical spinal cord.
View Article and Find Full Text PDFNeuroimage Clin
January 2025
The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental conditions that share genetic etiology and frequently co-occur. Given this comorbidity and well-established clinical heterogeneity, identifying individuals with similar brain signatures may be valuable for predicting clinical outcomes and tailoring treatment strategies. Cortical myelination is a prominent developmental process, and its disruption is a candidate mechanism for both disorders.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.
View Article and Find Full Text PDFPediatr Radiol
December 2024
Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
Background: Diagnostically adequate contrast and spatial resolution in brain MRI require prolonged scan times, leading to motion artifacts and image degradation in awake children. Rapid multi-parametric techniques can produce diagnostic images in awake children, which could help to avoid the need for sedation.
Objective: To evaluate the utility of a rapid echo-planar imaging (EPI)-based multi-inversion spin and gradient echo (MI-SAGE) technique for generating multi-parametric quantitative brain maps and synthetic contrast images in awake pediatric participants.
J Belg Soc Radiol
December 2024
Faculty of Medicine, Departments of Internal Medicine, İnönü University, Turkey.
This study aims to assess the performances of T1‑weighted (T1W) and T2‑weighted (T2W) Dixon sequences as replacements for the standard magnetic resonance imaging (MRI) protocol for diagnosing active and chronic sacroiliitis. This single‑centre, prospective study included 107 patients who underwent 3 Tesla MRIs. The patients with inflammatory low‑back pain (aged 18-50 years) were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!