affinity maturation of therapeutic monoclonal antibodies is commonly applied to achieve desired properties, such as improved binding kinetics and affinity. Currently there are no universally accepted protocols for generation of variegated antibody libraries or selection thereof. Here, we performed affinity maturation using a yeast-based single-chain variable fragment (scFv) expression system to compare two mutagenesis methods: random mutagenesis across the entire V(D)J region by error-prone PCR, and a novel combinatorial mutagenesis process limited to the complementarity-determining regions (CDRs). We applied both methods of mutagenesis to four human antibodies against well-known immuno-oncology target proteins. Detailed sequence analysis showed an even mutational distribution across the entire length of the scFv for the error-prone PCR method and an almost exclusive targeting of the CDRs for the combinatorial method. Though there were distinct mutagenesis profiles for each target antibody and mutagenesis method, we found that both methods improved scFv affinity with similar efficiency. When a subset of the affinity-matured antibodies was expressed as full-length immunoglobulin, the measured affinity constants were mostly comparable to those of the respective scFv, but the full-length antibodies were inferior to their scFv counterparts for one of the targets. Furthermore, we found that improved affinity for the full-length antibody did not always translate into enhanced binding to cell-surface expressed antigen or improved immune checkpoint blocking ability, suggesting that screening with full-length antibody or antigen-binding fragment formats might be advantageous and the subject of a future study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531523 | PMC |
http://dx.doi.org/10.1080/19420862.2020.1803646 | DOI Listing |
Alzheimers Dement
December 2024
Imperial College London, London, United Kingdom
Background: Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents in Alzheimer’s disease (AD). In the last few years, Aprile and co‐workers designed and purified a single‐domain antibody (sdAb), called DesAb‐O, with high specificity for Aβ oligomeric conformers. Recently, Cascella and co‐workers showed that DesAb‐O can selectively detect synthetic Aβ oligomers both in vitro and in cultured cells, neutralizing their associated neuronal dysfunction.
View Article and Find Full Text PDFFront Immunol
January 2025
Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.
View Article and Find Full Text PDFBlood
January 2025
NIH, National Heart Lung Blood Institute, Bethesda, Maryland, United States.
Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia.
Background: The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!