Ni-rich LiNi Mn Co O (NMC) layered compounds are the dominant cathode for lithium ion batteries. The role of crystallographic defects on structure evolution and performance degradation during electrochemical cycling is not yet fully understood. Here, we investigated the structural evolution of a Ni-rich NMC cathode in a solid-state cell by in situ transmission electron microscopy. Antiphase boundary (APB) and twin boundary (TB) separating layered phases played an important role on phase change. Upon Li depletion, the APB extended across the layered structure, while Li/transition metal (TM) ion mixing in the layered phases was detected to induce the rock-salt phase formation along the coherent TB. According to DFT calculations, Li/TM mixing and phase transition were aided by the low diffusion barriers of TM ions at planar defects. This work reveals the dynamical scenario of secondary phase evolution, helping unveil the origin of performance fading in Ni-rich NMC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202008144DOI Listing

Publication Analysis

Top Keywords

structural evolution
8
ni-rich nmc
8
layered phases
8
layered
5
direct observation
4
observation defect-aided
4
defect-aided structural
4
evolution
4
evolution nickel-rich
4
nickel-rich layered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!