Magnetic resonance imaging of hyperpolarized pyruvate provides a new imaging biomarker for cancer metabolism, based on the dynamic in vivo conversion of hyperpolarized pyruvate to lactate. Methods for quantification of signal evolution need to be robust and reproducible across a range of experimental conditions. Pharmacokinetic analysis of dynamic spectroscopic imaging data from hyperpolarized pyruvate and its metabolites generally assumes that signal arises from ideal rectangular slice excitation profiles. In this study, we examined whether this assumption could lead to bias in kinetic analysis of hyperpolarized pyruvate and, if so, whether such a bias can be corrected. A Bloch-McConnell simulator was used to generate synthetic data using a known set of "ground truth" pharmacokinetic parameter values. Signal evolution was then analyzed using analysis software that either assumed a uniform slice profile, or incorporated information about the slice profile into the analysis. To correct for slice profile effects, the expected slice profile was subdivided into multiple sub-slices to account for variable excitation angles along the slice dimension. An ensemble of sub-slices was then used to fit the measured signal evolution. A mismatch between slice profiles used for data acquisition and those assumed during kinetic analysis was identified as a source of quantification bias. Results indicate that imperfect slice profiles preferentially increase detected lactate signal, leading to an overestimation of the apparent metabolic exchange rate. The slice profile-correction algorithm was tested in simulation, in phantom measurements, and applied to data acquired from a patient with prostate cancer. The results demonstrated that slice profile-induced biases can be minimized by accounting for the slice profile during pharmacokinetic analysis. This algorithm can be used to correct data from either single or multislice acquisitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484340PMC
http://dx.doi.org/10.1002/nbm.4373DOI Listing

Publication Analysis

Top Keywords

slice profile
24
hyperpolarized pyruvate
20
slice
12
signal evolution
12
profile effects
8
analysis hyperpolarized
8
pharmacokinetic analysis
8
kinetic analysis
8
slice profiles
8
analysis
7

Similar Publications

Introduction: Chronic inflammation caused by infections has a significant negative impact on the reproductive system and impairs fertility. The corpus luteum (CL) plays a central role not only in regulating the ovary cycle, but also in implantation of the embryo and maintenance of early pregnancy through the secretion of progesterone. Understanding the intricate interplay between inflammatory processes and reproductive organ's function is crucial for the development of effective therapeutic strategies to alleviate reproductive disorders and improve fertility.

View Article and Find Full Text PDF

Spatially aligned graph transfer learning for characterizing spatial regulatory heterogeneity.

Brief Bioinform

November 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Spatially resolved transcriptomics (SRT) technologies facilitate the exploration of cell fates or states within tissue microenvironments. Despite these advances, the field has not adequately addressed the regulatory heterogeneity influenced by microenvironmental factors. Here, we propose a novel Spatially Aligned Graph Transfer Learning (SpaGTL), pretrained on a large-scale multi-modal SRT data of about 100 million cells/spots to enable inference of context-specific spatial gene regulatory networks across multiple scales in data-limited settings.

View Article and Find Full Text PDF

Background: While widefield microscopy has long been constrained by out-of-focus scattering, advancements have generated a solution in the form of confocal laser scanning microscopy (cLSM) and optical sectioning microscopy using structured illumination (OSM). In this study, we aim to investigate, using microglia branching, if cLSM and OSM can produce images with comparable morphological characteristics.

Results: By imaging the somatosensory microglia from a tissue slice of a 3-week-old mouse and establishing morphological parameters that characterizes the microglial branching pattern, we were able to show that there is no difference in total length of the branch tree, number of branches, mean branch length and number of primary to terminal branches.

View Article and Find Full Text PDF

Objectives: To describe the characteristics of the demands for health technologies submitted to the Brazilian Government.

Methodology: A descriptive analysis was carried out by surveying the reports produced by the National Committee for the Incorporation of Health Technologies since its creation in Brazil until 2023. The extracted data were tabulated in 3 domains: identification of demand, epidemiological profile of the disease, and clinical evidence and economic assessment.

View Article and Find Full Text PDF

Protocol for generating protein profiles and distance-based network analysis of murine tissue slices.

STAR Protoc

January 2025

Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. Electronic address:

We introduce a protocol for spatial proteomics using thin cryotome sections of mouse skeletal muscle tissue. We describe steps for preparing muscle sections and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to generate spatial protein profiles along the longitudinal skeletal muscle axis. We detail procedures for scanning longitudinal protein profiles and replacing missing data using a sliding window approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!