Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional electronic health record information displays are not optimized for efficient information processing. Graphical displays that integrate patient information can improve information processing, especially in data-rich environments such as critical care. We propose an adaptable and reusable approach to patient information display with modular graphical components (widgets). We had two study objectives. First, reduce numerous widget prototype alternatives to preferred designs. Second, derive widget design feature recommendations. Using iterative human-centered design methods, we interviewed experts to hone design features of widgets displaying frequently measured data elements, e.g., heart rate, for acute care patient monitoring and real-time clinical decision-making. Participant responses to design queries were coded to calculate feature-set agreement, average prototype score, and prototype agreement. Two iterative interview cycles covering 64 design queries and 86 prototypes were needed to reach consensus on six feature sets. Interviewers agreed that line graphs with a smoothed or averaged trendline, 24-h timeframe, and gradient coloring for urgency were useful and informative features. Moreover, users agreed that widgets should include key functions: (1) adjustable reference ranges, (2) expandable timeframes, and (3) access to details on demand. Participants stated graphical widgets would be used to identify correlating patterns and compare abnormal measures across related data elements at a specific time. Combining theoretical principles and validated design methods was an effective and reproducible approach to designing widgets for healthcare displays. The findings suggest our widget design features and recommendations match critical care clinician expectations for graphical information display of continuous and frequently updated patient data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854828 | PMC |
http://dx.doi.org/10.1007/s10877-020-00571-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!