Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combining synthetic polymer scaffolds with inorganic bioactive factors is widely used to promote the bioactivity and bone conductivity of bone tissue. However, except for the chemical composition of scaffold, the biomimetic structure also plays an important role in its application. In this study, we report the fabrication of polylactic acid/hydroxyapatite (PLA/HA) composite nanofibrous scaffolds via phase separation method to mimic the native extracellular matrix (ECM). The SEM analysis showed that the addition of HA dramatically impacted the morphology of the PLA matrix, which changed from 3D nanofibrous network structure to a disorderly micro-nanofibrous porous structure. At the same time, HA particles could be evenly dispersed at the end of the fiber. The FTIR and XRD demonstrated that there was not any chemical interaction between PLA and HA. Thermal analyses showed that HA could decrease the crystallization of PLA, but improve the thermal decomposition temperature of the composite scaffold. Moreover, water contact angle analysis of the PLA/HA composite scaffold demonstrated that the hydrophilicity increased with the addition of HA. Furthermore, apatite-formation ability tests confirmed that HA could not only more and faster induced the deposition of weak hydroxyapatite but also induced specific morphology of HA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-020-06415-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!