Objective: To date, a systematic characterization of abnormalities in resting-state effective connectivity (rsEC) in obsessive-compulsive disorder (OCD) is lacking. The present study aimed to systematically characterize whole-brain rsEC in OCD patients as compared to healthy controls.

Methods: Using resting-state fMRI data of 50 unmedicated patients with OCD and 50 healthy participants, we constructed whole-brain rsEC networks using Granger causality analysis followed by univariate and multivariate comparisons between patients and controls. Similar analyses were performed for resting-state functional connectivity (rsFC) networks to examine how rsFC and rsEC differentially capture abnormal brain connectivity in OCD.

Results: Univariate comparisons identified 10 rsEC networks that were significantly disrupted in patients, and which were mainly associated with frontal-parietal cortex, basal ganglia, and cerebellum. Conversely, abnormal rsFC networks were widely distributed throughout the whole brain. Multivariate pattern analysis revealed a classification accuracy as high as 80.5% for distinguishing patients from controls using combined whole-brain rsEC and rsFC.

Conclusions: The results of the present study suggest disrupted communication of information from frontal-parietal cortex to basal ganglia and cerebellum in OCD patients. Using combined whole-brain rsEC and rsFC, multivariate pattern analysis revealed a classification accuracy as high as 80.5% for distinguishing patients from controls. The alterations observed in OCD patients could aid in identifying treatment mechanisms for OCD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-020-00333-3DOI Listing

Publication Analysis

Top Keywords

whole-brain rsec
16
frontal-parietal cortex
12
cortex basal
12
basal ganglia
12
ganglia cerebellum
12
ocd patients
12
patients controls
12
patients
9
resting-state effective
8
effective connectivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!