Using a mouse model of systemic lupus erythematosus (SLE), we recently demonstrated that the two major manifestations of SLE are mechanistically independent because the type I IFN pathway leads to the autoantibody production whereas the NF-κB activation is sufficient for the development of glomerulonephritis. To further advance our understandings on the molecular pathways regulating the development of SLE, we studied the role of IRF8 because it controls both type I IFN and NF-κB pathways and saw that IRF8-deficient mice failed to develop either glomerulonephritis or the autoantibody production. Furthermore, these genetically engineered mice prompted us to realize the important role of Ly6C inflammatory monocytes in the development of SLE. These monocytes migrate to the peritoneal cavity in WT and IRF7-deficient mice but not in IRF8-deficient mice, and there they produce both type I IFN and proinflammatory cytokines in WT mice, while in IRF7-deficient mice they only produce proinflammatory cytokines. Upon migration to the spleen, Ly6C inflammatory monocytes differentiate into dendritic cells (DCs) which are capable of producing proinflammatory cytokines in response to dsDNA autoantigen. Collectively, type I IFN produced from inflammatory monocytes/monocyte-derived DCs might be essential for autoantibody production whereas proinflammatory cytokines produced from them might mediate tissue damages in this model. Our study reveals a specialized role for monocyte-derived antigen presenting cells in autoimmunity. Plasticity of monocyte might play an important role not only in the pathogenesis of the disease but also in flare-ups of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388367PMC
http://dx.doi.org/10.1016/j.jtauto.2020.100060DOI Listing

Publication Analysis

Top Keywords

type ifn
16
proinflammatory cytokines
16
autoantibody production
12
dendritic cells
8
model systemic
8
systemic lupus
8
lupus erythematosus
8
development sle
8
irf8-deficient mice
8
ly6c inflammatory
8

Similar Publications

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Human metapneumovirus (HMPV) is an important causative agent of respiratory tract disease. Fundamental knowledge of the interaction between HMPV and the innate immune system could lead to the design of novel antiviral therapies. Previously, we demonstrated that HMPV M2-2 deletion mutants had hypermutated genomes and contained defective interfering particles (DIs), which are potent inducers of the IFN response.

View Article and Find Full Text PDF

Purpose: Postherpetic neuralgia (PHN) is a type of refractory neuropathic pain that causes significant suffering, disability, economic loss, and medical burden. In this study, we aim to evaluate the efficacy and safety of interferon (IFN)-α1b injection into the intervertebral foramen of patients with PHN.

Patients And Methods: This is a study protocol for a randomized, double-blind placebo-controlled multicenter clinical trial.

View Article and Find Full Text PDF

Introduction: The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon.

Methods: We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination.

Results: We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!