The yeast cell wall is composed of mannoproteins, β-1,3/β-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-β-1,3/anti-β-1,6-glucan antibodies for β-1,3/β-1,6-glucans. Binding specificity of these biomolecules were validated using penta--acetylchitopentaose, α-mannans, laminarin (short β-1,3-glucan chain) and gentiobiose (2 glucose units linked in β 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance x, dissociate rate k and the lowest force ( ) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of β-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7389267PMC
http://dx.doi.org/10.1016/j.tcsw.2019.100027DOI Listing

Publication Analysis

Top Keywords

cell wall
16
afm dendritips
12
cell surface
12
dendritips functionalized
8
investigate cell
8
surface structure
8
structure organization
8
yeast cell
8
cell
7
wall
5

Similar Publications

Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants.

View Article and Find Full Text PDF

Bacterial type IV secretion systems (T4SSs) are widespread nanomachines specialized in the transport across the cell envelope of various types of molecules including mobile genetic elements during conjugation. Despite their prevalence in Gram-positive bacteria, including relevant pathogens, their assembly and functioning remain unknown. This study addresses these gaps by investigating VirB8 proteins, known to be central components of conjugative T4SSs in Gram-positive bacteria.

View Article and Find Full Text PDF

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA.

Mol Plant Pathol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.

Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes.

View Article and Find Full Text PDF

Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!