The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3' untranslated regions (3'UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385519 | PMC |
http://dx.doi.org/10.1016/j.ajur.2020.06.003 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.
View Article and Find Full Text PDFOncogene
January 2025
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China.
Gamma-interferon-induced lysosomal thiol reductase (GILT), known for catalyzing disulfide bond reduction, is involved in various physiological processes. While the involvement of GILT in the development of various tumors has been demonstrated, the mechanisms underlying its regulation in prostate cancer (PCa) are not fully understood. In the present study, we confirmed that GILT was significantly upregulated in PCa and facilitated tumor metastasis.
View Article and Find Full Text PDFMol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: A close relationship exists between castration-resistant prostate cancer (CRPC) and histidine metabolism by gut microbes. However, the effects of the histidine metabolite imidazole propionate (IMP) on prostate cancer (PCa) and its underlying mechanisms are not well understood.
Methods: We first assessed the effects of IMP on cell proliferation and migration at the cellular level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!