Preliminary Results with the Shape Memory Nail: A Self-contained Distal Locking Mechanism for Diaphyseal Femur Fractures.

Strategies Trauma Limb Reconstr

Department of Orthopaedic Surgery, University of Kwa-Zulu Natal, Pietermaritzburg, South Africa.

Published: January 2019

Unlabelled: Distal interlocking of intramedullary nails can be challenging if not done regularly and can be associated with a prolonged operating time and excessive radiation exposure. Multiple techniques have been developed to overcome these problems but all still rely on conventional distal locking methods. Between December 2011 and March 2013, 18 patients with diaphyseal femur fractures were treated with the shape memory nail (Orthofix, Verona, Italy). These nails use self-contained nitinol memory metal 'wings' at the distal aspect of the nail to provide rotational and longitudinal stability. We observed fracture union in all 18 cases with no non-unions, rotational malalignments or peri-prosthetic infections. Median theatre time was 35 (18-71) minutes and median total radiation time was 50 (20-209) seconds. The shape memory nail (Orthofix, Verona, Italy) is an attractive alternative to conventional interlocking femoral nails. It provides sufficient stability to allow fracture union while decreasing theater time and limiting radiation exposure.

How To Cite This Article: Ferreira N, Nieuwoudt L. Preliminary Results with the Shape Memory Nail: A Self-contained Distal Locking Mechanism for Diaphyseal Femur Fractures. Strategies Trauma Limb Reconstr 2019;14(3):115-120.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368356PMC
http://dx.doi.org/10.5005/jp-journals-10080-1437DOI Listing

Publication Analysis

Top Keywords

shape memory
16
memory nail
16
distal locking
12
diaphyseal femur
12
femur fractures
12
preliminary shape
8
nail self-contained
8
self-contained distal
8
locking mechanism
8
mechanism diaphyseal
8

Similar Publications

Experiences of caregiving-related adversity are common and one of the strongest predictors of internalizing psychopathology (i.e., anxiety and depression).

View Article and Find Full Text PDF

Visuospatial working memory (VSWM) is crucial for navigating complex environments and is known to decline with ageing. The Free-Movement Pattern (FMP) Y-maze, used in animal studies, provides a robust paradigm for assessing VSWM via analyses of individual differences in repeated alternating sequences of left (L) and right (R) responses (LRLR, etc.), the predominant search pattern in many species.

View Article and Find Full Text PDF

Electric-field-induced shape memory effect has potential applications in electromechanical actuator. Here, this study proposes the a phase structure design routine in (1-x)(75NaBiTiO-25SrTiO)-xPbTiO ceramics to obtain large electromechanical response and shape memory effect. It is found that the shape memory effect is closely related to the bending deformation induced by asymmetric polarization between positive and negative electrodes, which is resulted from the reductions of Bi and Pb because of electron injection from negative electrode.

View Article and Find Full Text PDF

We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.

View Article and Find Full Text PDF

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!