Raw milk microbiota are complex communities with a significant impact on the hygienic, sensory and technological quality of milk products. However, there is a lack of knowledge on factors determining their composition. In the present study, four bulk tank milk samples of two farms at two different time points were analyzed in detail for their microbiota using cultivation and 16S rRNA amplicon sequencing. Diversity in samples from the first time point was assessed via cultivation of 500 aerobic mesophilic bacterial isolates in each sample. A high biodiversity of 70 and 110 species per sample was determined, of which 25-28% corresponded to yet unknown taxa. The isolates were dominated by Gram-positive members of the genera , or , whilst and were most abundant among the Gram-negative taxa. At the second time point, samples of the same farms were analyzed via both cultivation (1,500 individual colonies each) and high-throughput 16S rRNA gene amplicon sequencing. The latter revealed a threefold higher biodiversity at the genus level, as anaerobic or fastidious species were also detected. However, cultivation identified genera not captured by sequencing, indicating that both approaches are complementary. Using amplicon sequencing, the relative abundance of a few genera was distorted, which seems to be an artifact of sample preparation. Therefore, attention needs to be paid to the library preparation procedure with special emphasis on cell lysis and PCR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365021PMC
http://dx.doi.org/10.3389/fmicb.2020.01557DOI Listing

Publication Analysis

Top Keywords

amplicon sequencing
16
high biodiversity
8
raw milk
8
milk microbiota
8
samples farms
8
16s rrna
8
time point
8
sequencing
5
complementary cultivation
4
cultivation high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!