This 24-color flow cytometry panel focuses on characterizing antigen-specific B cells and precise delineation of B-cell subsets in chronic infections and is applicable to other chronic diseases such as autoimmunity. The panel was optimized for human cryopreserved peripheral blood mononuclear cells (PBMCs). Markers were chosen to extensively distinguish B-cell lineages (CD19, CD20, CD10, CD38, CD24, IgM, IgD, CD27, CD21, CD43, CD5). Inclusion of antigen-specific probes was of high priority in order to assess hepatitis B virus (HBV) antigen-specific B cells for our purposes. These probes can be readily exchanged for other pathogen-specific probes or additional markers for the panel to be tailored to desired research questions beyond HBV. In addition, we included a comprehensive and unique set of functional markers such as chemokine receptors (CXCR3, CXCR5), co-stimulatory molecule (CD86), Fc receptor (CD32), regulatory molecules (BTLA, CD39), and inhibitory markers associated with chronic infections (PD-1, FcRL5, CD11c, CD22) to enable in-depth analysis of global and antigen-specific B cells during chronic infection. © 2020 International Society for Advancement of Cytometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581549 | PMC |
http://dx.doi.org/10.1002/cyto.a.24204 | DOI Listing |
Nat Immunol
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Mucosal antigen-specific T cells are pivotal for pathogen clearance and immune modulation in respiratory infections. Dysregulated T cell responses exacerbate coronavirus disease 2019 severity, marked by cytokine storms and respiratory failure. Despite extensive description in peripheral blood, the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in the lungs remain elusive.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.
Background: Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to (Mtb) in patients with TBI and TB disease.
Methods: We enrolled TBI and TB patients with and without IMID.
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, CHINA.
T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision.
View Article and Find Full Text PDFAllergy
January 2025
Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!