The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1-2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfb.14481 | DOI Listing |
Integr Zool
January 2025
Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.
Over the past few decades, ocean hypoxia has been increasing due to human activities. Hypoxic stress, characterized by a reduced level of dissolved oxygen, is an escalating threat to marine ecosystems, with potentially devastating effects on the viability of endangered species such as the tri-spine horseshoe crab Tachypleus tridentatus. Even though this species is remarkably resilient to low oxygen levels, persistent hypoxia can negatively impact its population's survivability.
View Article and Find Full Text PDFIntegr Zool
January 2025
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
The burrow microhabitats created by burrowing mammals, as a hotspot for biodiversity distribution in ecosystems, provide multiple critical resources for many other sympatric species. However, the cascading effects of burrow resources on sympatric animal community assemblages and interspecific interactions are largely unknown. During 2020-2023, we monitored 184 Chinese pangolin (Manis pentadactyla) burrows using camera traps to reveal the burrow utilization patterns of commensal species.
View Article and Find Full Text PDFHealth Promot J Austr
January 2025
Centre for Mental Health Research, National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia.
Issue Addressed: University students are at risk of poor health behaviours which negatively affect mental health and wellbeing. Informing the implementation of appropriate strategies to support Australian university students' health and wellbeing, requires quality evidence. This study aimed to identify research priorities for improving health behaviours to optimise mental health of Australian university students.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China. Electronic address:
Small burrowing herbivores play a crucial role in maintaining structure and function of grassland ecosystems. To date, our understanding of whether practicing ecological uniqueness can enhance plant diversity conservation under small herbivore disturbances remains limited. Here, we investigate the ecological uniqueness of plant communities, which include habitats disturbed and undisturbed by plateau pikas.
View Article and Find Full Text PDFHeliyon
November 2024
Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh, 520007, India.
This paper proposes Pomarine jaeger Optimization (PJO) algorithm, Tiger hunting Optimization (THO) Algorithm, Desert Reynard and Vixen Inspired Optimization (DRVIO) Algorithm, Lonchodidae optimization (LO) algorithm, Caracal optimization (CO) algorithm, Barasingha optimization (BO) algorithm, Amur leopard optimization (AO) algorithm and Empress SARANI Optimization Algorithm to solve the active power loss reduction problem. Regular actions of Pomarine jaeger have been emulated to model the PJO procedure. In THO algorithm, how the Tiger moves to capture the prey is imitated and formulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!