In this study, novel Pd nanowire networks (PdNW) grown on three-dimensional polyaniline hydrogel (3D-PANI) were prepared via a facile one-step electrodeposition approach at a constant potential of - 0.2 V and further utilized as an electrochemical sensing material for sensitive determination of glucose in alkaline medium. Compared with the sensor based on Pd nanofilm (PdNF)/3D-PANI prepared by electrodeposition at - 0.9 V, the sensor based on PdNW/3D-PANI presented substantially enhanced electrocatalytic activity towards glucose oxidation, with an excellent sensitivity of 146.6 μA mM cm, a linear range from 5.0 to 9800 μM, and a low detection limit of 0.7 μM and was, therefore, demonstrated to be available for the determination of glucose in human serum. These findings are likely attributed to the combination of advantages of both PdNW and 3D-PANI, which outperformed most other Pd-based non-enzymatic glucose sensors reported earlier. Moreover, this non-enzymatic electrochemical sensor based on PdNW/3D-PANI may serve as an alternative tool for the assay of glucose and possibly other biomolecules. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-020-02816-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!