Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Food Chem
College of Animal Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Published: January 2021
Effect of twin-screw extrusion on soluble dietary fiber (SDF) from sweet potato residues (SPRs) were investigated using optimized conditions, at screw speed of 180 rpm, feed rate at 17 Hz, feed moisture at 40% and extrusion temperature at 150 °C. Extruded SDF, showed higher SDF levels (9.63%-29.25%), cholesterol and sodiumcholate adsorption capacity, radical scavenging capacity, and inhibition of digestive enzymes. Moreover, extrusion effectively reduced particle size and molecularweight of SDF, modulated monosaccharide ratios, and increased water retention capacity (WRC), oil retention capacity (ORC), swelling capacity (SC) and glucose absorption capacity (GAC). Additionally, scanning electron microscopy (SEM) demonstrated decomposition of macromolecules of SDF to smaller fractions and formation of a porous morphology following extrusion. Furthermore, the extruded SDF increased thermal stability as determined by differential scanning calorimetry (DSC). Overall, the SDF from SPRs with improved functional and physiochemical properties could be used as a functional additive in diverse food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.