Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium.

Microbiol Res

College of Life Sciences, Nanjing Normal University, No. 1, WenYuan Road, Qi Xia District, Nanjing, 210023, Jiangsu Province, China.

Published: November 2020

In this study, we have attempted to develop a plant growth promoting rhizobacteria (PGPR) consortia against early-stage diseases in Arachis hypogaea (Groundnut crop) plantation of Andhra Pradesh, India. The dominant PGPRs were selected by considering the various plant growth and protection qualities, followed by characterisation and grouping based on compatibility to form a consortium of PGPRs [Group-1 includes EX-1 (Acinetobacter baumannii stain HAMBI 1846); EX-3 (Pseudomonas aeruginosa strain A1K319); EX-5 (Bacillus subterraneus strain CF1.9); KNL-1 (Bacillus subtilis strain JMP-B); CTR-4 (Enterobacter cloacae strain VITKJ1); ANT-4 (Bacillus subtilis strain SBMP4) and Group-2 includes EX-4 (Pseudomonas otitidis strain SLC8); KDP-4 (Pseudomonas aeruginosa strain Kasamber 11); NLR-4 (Bacillus species ADMK68); ANT-6 (Bacillus subtilis subsp. inaquosorum strain KCTC 13429)]. In addition to resistance to early stage pathogens, in both in vitro and pot experiments the PGPR consortium showed significantly higher germination rate and root induction (Aspergillus niger; A. flavus; Fusarium oxysporum) when compared to control and fertilizer treated groups. In addition, Group 2 was more successful in stimulating and protecting plant growth among the two groups of PGPRs developed. The PGPR consortia developed showed multiple plant growth characteristics, including phosphate solubilization, production of HCN and Indole acetic acid along with broad antagonism against the tested phytopathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2020.126562DOI Listing

Publication Analysis

Top Keywords

plant growth
16
bacillus subtilis
12
arachis hypogaea
8
hypogaea groundnut
8
groundnut crop
8
rhizobacteria pgpr
8
pgpr consortium
8
pgpr consortia
8
pseudomonas aeruginosa
8
strain
8

Similar Publications

Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.

View Article and Find Full Text PDF

Examining ozone effects on the tropical C crop .

PeerJ

January 2025

College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia.

Ozone (O), a major air pollutant, can negatively impact plant growth and yield. While O impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O on sorghum, a C plant and the fifth most important cereal crop worldwide. We exposed grain sorghum ( cv.

View Article and Find Full Text PDF

Examining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.

View Article and Find Full Text PDF

Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.

View Article and Find Full Text PDF

Traditional uses, botanical description, phytochemistry, and pharmacological activities of : a review.

Front Pharmacol

January 2025

Faculty of Pharmaceutical and Allied Health Sciences, Shifa college of Pharmaceutical Sciences (SCPS), Shifa Tameer-e-Millat University, Islamabad, Pakistan.

Background: is an herbaceous herb belonging to the Phytolaccaceae family. The plant has a long history of usage in traditional medicine for treating a variety of ailments including infectious diseases, edema, inflammation, gastric, and abdominal distress. The traditional use, phytochemistry, and pharmacological properties of are outlined in this article.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!