On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.

Neuroimage

Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Published: November 2020

Diffusion-weighted magnetic resonance imaging (DW-MRI) tractography is a non-invasive tool to probe neural connections and the structure of the white matter. It has been applied successfully in studies of neurological disorders and normal connectivity. Recent work has revealed that tractography produces a high incidence of false-positive connections, often from "bottleneck" white matter configurations. The rich literature in histological connectivity analysis studies in the macaque monkey enables quantitative evaluation of the performance of tractography algorithms. In this study, we use the intricate connections of frontal, cingulate, and parietal areas, well established by the anatomical literature, to derive a symmetrical histological connectivity matrix composed of 59 cortical areas. We evaluate the performance of fifteen diffusion tractography algorithms, including global, deterministic, and probabilistic state-of-the-art methods for the connectivity predictions of 1711 distinct pairs of areas, among which 680 are reported connected by the literature. The diffusion connectivity analysis was performed on a different ex-vivo macaque brain, acquired using multi-shell DW-MRI protocol, at high spatial and angular resolutions. Across all tested algorithms, the true-positive and true-negative connections were dominant over false-positive and false-negative connections, respectively. Moreover, three-quarters of streamlines had endpoints location in agreement with histological data, on average. Furthermore, probabilistic streamline tractography algorithms show the best performances in predicting which areas are connected. Altogether, we propose a method for quantitative evaluation of tractography algorithms, which aims at improving the sensitivity and the specificity of diffusion-based connectivity analysis. Overall, those results confirm the usefulness of tractography in predicting connectivity, although errors are produced. Many of the errors result from bottleneck white matter configurations near the cortical grey matter and should be the target of future implementation of methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117201DOI Listing

Publication Analysis

Top Keywords

tractography algorithms
16
white matter
12
connectivity analysis
12
macaque brain
8
tractography
8
diffusion tractography
8
matter configurations
8
histological connectivity
8
quantitative evaluation
8
connectivity
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!