Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage.

Plant Physiol Biochem

Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic.

Published: September 2020

Seed germination is critical for successful crop production and this growth stage can be very sensitive to salt stress depending on the plant's tolerance mechanisms. The pretreatment of Chenopodium quinoa (quinoa) seeds with CaCl, HO and sodium nitroprusside (SNP) limited the adverse effect of salt stress on seed germination. The pre-treated seeds showed a significant increase in germination rate, relative germination rate and germination index while the mean germination time was significantly reduced under both optimal and stress conditions. In parallel with seed germination, the negative effect of salt stress on the activity of α-amylase and β-amylase was reduced in pre-treated seeds. The amylase enzymes are responsible for starch hydrolysis, so the reduction of amylase activity by salt stress resulted in higher starch content in the seeds and lower concentrations of water-soluble sugars such as glucose. Pretreatment stimulated amylase activity resulting in starch breakdown and increased content of water-soluble sugars in the salt-stressed seeds. Protein and amino acid contents were significantly enhanced in salt-stressed seeds, which were highlighted in pre-treated seeds. The findings of this study demonstrate that pretreatment of quinoa seeds with CaCl, HO and SNP at 5, 5 and 0.2 mM, respectively, concentration to achieve rapid germination at high levels under optimal and salt-stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.07.022DOI Listing

Publication Analysis

Top Keywords

seed germination
16
salt stress
16
pre-treated seeds
12
germination
9
chenopodium quinoa
8
seeds
8
quinoa seeds
8
seeds cacl
8
germination rate
8
amylase activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!