AI Article Synopsis

  • - The study explored using energy-dispersive X-ray fluorescent spectrometry (EDX) to detect aluminum, tin, and zinc in skin samples from experimental electrical injuries.
  • - Electrical injuries were simulated by exposing subjects to 100V alternating current for 10 seconds, which resulted in noticeable blister formation in the skin samples.
  • - EDX effectively identified the metal peaks (Al, Sn, Zn) in the skin samples, demonstrating its potential value in diagnosing electrocution cases.

Article Abstract

We investigated the application of energy-dispersive X-ray fluorescent spectrometry (EDX) analysis to the detection of aluminum (Al), tin (Sn) and zinc (Zn) as the electric conductor in experimental electrical injury. Experimental electrical injury was caused by exposure to alternating current at 100 V for 10 s. The peaks of Al, Sn, and Zn were detected by EDX in formalin-fixed skin samples of each current exposure group. Histological examination revealed blister formation in all samples of each current exposure group. EDX analysis technique can be applied to detect Al, Sn, and Zn as the electric conductor, and is useful in the diagnosis of electrocution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.legalmed.2020.101768DOI Listing

Publication Analysis

Top Keywords

energy-dispersive x-ray
8
x-ray fluorescent
8
fluorescent spectrometry
8
edx analysis
8
electric conductor
8
experimental electrical
8
electrical injury
8
samples current
8
current exposure
8
exposure group
8

Similar Publications

Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Purpose: The study conducts a comparative analysis between two prominent methods for fabricating composites for bone scaffolds-the (solid) solvent method and the solvent-free (melting) method. While previous research has explored these methods individually, this study provides a direct comparison of their outcomes in terms of physicochemical properties, cytocompatibility, and mechanical strength. We also analyse their workflow and scalability potentials.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

A phase-transited lysozyme coating doped with strontium on titanium surface for bone repairing via enhanced osteogenesis and immunomodulatory.

Front Cell Dev Biol

January 2025

Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Introduction: Titanium is currently recognized as an excellent orthopedic implant material, but it often leads to poor osseointegration of the implant, and is prone to aseptic loosening leading to implant failure. Therefore, biofunctionalization of titanium surfaces is needed to enhance their osseointegration and immunomodulation properties to reduce the risk of implant loosening. We concluded that the utilization of PTL-Sr is a direct and effective method for the fabrication of multifunctional implants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!