Batch experiments were conducted to study the migration behavior of arsenic (As) and iron (bivalent, trivalent, and total Fe) of the presence of the low molecular weight organic acids (LMWOAs) citric acid, malic acid, and oxalic acid in As-enriched mangrove sediments. The results for supernatant As/Fe species were significant according to each LMWOA treatment. Significant non-linear correlations were found among As level, pH, and acid dose based on our predictive model. The capacity of LMWOAs to mobilize As/Fe species followed the order of citric acid > malic acid/oxalic acid. The supernatant As correlated positively with the LMWOAs dose and negatively correlated with the pH. As migration was affected by acid strength, the number of carboxyl groups, the pH and levels of Fe compounds in the sediments. The results indicate that LMWOAs can potentially attenuate As contamination from mangrove sediment, allowing for a better understanding of As/Fe behavior in the rhizosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2020.111480 | DOI Listing |
Mar Pollut Bull
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW75BD, UK.
Microplastic pollution poses a significant threat to coastal ecosystems worldwide. Despite its widespread occurrence, knowledge on the prevalence and fate of microplastics across food webs is limited. To bridge this gap, we conducted an extensive study on microplastic contamination in mudflats, mangroves, and sand beaches being key habitats for wintering shorebirds on the west coast of India.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.
View Article and Find Full Text PDFMar Genomics
March 2025
Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:
Mangroves, owing to their unique living environment, serve as an important source of natural bioactive compounds. Sarcopodium sp. QM3-1, a marine fungus isolated from mangrove sediments of Quanzhou Bay, exhibited antifungal activity against the plant pathogen Agrobacterium tumefaciens and Magnaporthe oryzae.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:
The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.
View Article and Find Full Text PDFMar Drugs
December 2024
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Mangrove ecosystems have attracted widespread attention because of their high salinity, muddy or sandy soil, and low pH, as well as being partly anoxic and periodically soaked by tides. Mangrove plants, soil, or sediment-derived fungi, especially the species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This paper reviews the structural diversity and biological activity of secondary metabolites isolated from mangrove ecosystem-derived species over the past 5 years (January 2020-October 2024), and 417 natural products (including 170 new compounds, among which 32 new compounds were separated under the guidance of molecular networking and the OSMAC approach) are described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!