The Mitochondria-targeted Peptide, Bendavia, Attenuated Ischemia/Reperfusion-induced Stroke Damage.

Neuroscience

Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan. Electronic address:

Published: September 2020

After ischemic stroke, oxygen and nutrition depletion induce mitochondrial dysfunction, which aggravates brain injury. Bendavia, a mitochondria-targeted tetra-peptide, has anti-oxidative and anti-inflammatory activities. We previously reported that bendavia protected human brain microvascular endothelial cells against oxygen/glucose deprivation (OGD)-induced damage via preserving mitochondrial function. The effects of bendavia on mitochondrial function include the inhibition of reactive oxygen species (ROS) production, inhibition of apoptosis, and restoration of adenosine tri-phosphate synthesis. However, the influence of bendavia on the blood-brain barrier (BBB) and neurons after brain ischemia/reperfusion damage is unclear. The aim of this study was to investigate whether bendavia has protective effects against ischemia/reperfusion damage using both in vivo and in vitro models. The in vivo experiments were conducted in mice, which were subjected to transient middle cerebral occlusion (t-MCAO) to induce brain ischemia/reperfusion damage. After t-MCAO, the cerebral blood flow (CBF), neurological deficits, infarct volume, BBB permeability, and microglia/macrophage activation were assessed. Compared to the vehicle group, bendavia administration (administered twice; immediately after reperfusion and 4 h later) attenuated the sensori-motor dysfunction and infarct formation independent of CBF variation. In addition, bendavia decreased BBB hyper-permeability and microglia/macrophage activation. The in vitro experiments were conducted utilizing two models: (1) OGD/re-oxygenation (OGD/R) or (2) hydrogen peroxide (HO)-induced neuron damage. In both models, bendavia inhibited neuronal cell death induced by OGD/R or HO. These findings indicated that bendavia attenuated brain ischemia/reperfusion damage and has direct neuroprotective effects against cell injury. Therefore, bendavia may be a novel therapeutic agent to improve ischemic stroke patient outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.07.044DOI Listing

Publication Analysis

Top Keywords

ischemia/reperfusion damage
16
brain ischemia/reperfusion
12
bendavia
11
bendavia attenuated
8
ischemic stroke
8
injury bendavia
8
mitochondrial function
8
experiments conducted
8
microglia/macrophage activation
8
damage
7

Similar Publications

Introduction: Brain ischemia-reperfusion can cause serious and irreversible health problems. Recent studies have suggested that certain flavonoids may help stabilize the correctly folded structure of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations.

Objective: The current study aimed to determine the effect of 3',4'-Dihydroxyflavonol (DiOHF) supplementation for 1 week on lipid peroxidation in the retina tissue following focal brain ischemia-reperfusion in rats.

View Article and Find Full Text PDF

Background: The aim of the study was to explore a feasible method for alleviating limb ischemia-reperfusion injury (LI/RI) through the use of a high-concentration citrate solution (HC-A solution) for limb perfusion (LP).

Methods: Eighteen pigs were divided into three groups: the Sham group, LI/RI group, and HCA group. The Sham group underwent exposure of the iliac artery and vein.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!