The structure-specific ERCC1-XPF endonuclease is essential for repairing bulky DNA lesions and helix distortions induced by UV radiation, which forms cyclobutane pyrimidine dimers (CPDs), or chemicals that crosslink DNA strands such as cyclophosphamide and platinum-based chemotherapeutic agents. Inhibition of the ERCC1-XPF endonuclease activity has been shown to sensitize cancer cells to these chemotherapeutic agents. In this study, we have conducted a structure activity relationship analysis based around the previously identified hit compound, 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin1-yl)methyl)phenol (F06), as a reference compound. Three different series of compounds have been rationally designed and successfully synthesized through various modifications on three different sites of F06 based on the corresponding suggestions of the previous pharmacophore model. The in vitro screening results revealed that 2-chloro-9-((3-((4-(2-(dimethylamino)ethyl)piperazin-1-yl)methyl)-4-hydroxyphenyl)amino)acridin-2-ol (B9) has a potent inhibitory effect on the ERCC1-XPF activity (IC = 0.49 μM), showing 3-fold improvement in inhibition activity compared to F06. In addition, B9 not only displayed better binding affinity to the ERCC1-XPF complex but also had the capacity to potentiate the cytotoxicity effect of UV radiation and inhibiting the nucleotide excision repair, by the inhibition of removal of CPDs, and cyclophosphamide toxicity to colorectal cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.112658DOI Listing

Publication Analysis

Top Keywords

ercc1-xpf endonuclease
8
chemotherapeutic agents
8
cancer cells
8
ercc1-xpf
5
design synthesis
4
synthesis in vitro
4
in vitro cell-free/cell-based
4
cell-free/cell-based biological
4
biological evaluations
4
evaluations novel
4

Similar Publications

Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging.

Int J Mol Sci

December 2024

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.

DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.

View Article and Find Full Text PDF

Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome-related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin-resistant lung adenocarcinoma (LUAD) cells to cisplatin.

View Article and Find Full Text PDF

The synergy between alkylating agents and ERCC1-XPF inhibitors is p53 dependent.

Fundam Clin Pharmacol

February 2025

Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.

Background: DNA repair plays a major role in maintaining genomic stability, thus limiting the transformation of normal cells into cancer cells. However, in cancer patients treated with DNA-targeting drugs, DNA repair can decrease efficacy by removing the damage generated by such molecules that is needed to induce pharmacological activity. Inhibiting DNA repair thus represents an interesting approach to potentiating the activity of chemotherapy in this setting.

View Article and Find Full Text PDF

Background: Cisplatin (CDDP) remains a key agent in the treatment of muscle-infiltrating bladder carcinoma (MIBC). However, a proportion of MIBC patients do not respond to chemotherapy, which may be caused by the increased repair of CDDP-induced DNA damage. The purpose of this study was to explore the prognostic value of proteins involved in nucleotide excision repair (NER) and translesion DNA synthesis (TLS) in MIBC patients.

View Article and Find Full Text PDF

Background And Aim: Cancer cell's innate chemotherapeutic resistance continues to be an obstacle in molecular oncology. This theory is firmly tied to the cancer cells' integral DNA repair mechanisms continuously neutralizing the effects of chemotherapy. Amidst these mechanisms, the nuclear excision repair pathway is crucial in renovating DNA lesions prompted by agents like Cisplatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!