Ascorbic acid: The chemistry underlying its antioxidant properties.

Free Radic Biol Med

Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.

Published: November 2020

Ascorbic acid (vitamin C) is an unusual antioxidant in that it donates a single reducing equivalent, and the radical it forms, monodehydroascorbate, reacts preferentially with radicals instead of with non-radical compounds. This happens because removal of an electron from monodehydroascorbate would create a tricarbonyl structure that is energetically unfavored. Instead of forming this structure, ascorbic acid oxidizes only to monodehydroascorbate, and monodehydroascorbate reacts with other radicals, oxidizing by mechanisms that may circumvent formation of this unfavored structure. Ironically, this tricarbonyl compound, which we suggest be called pseudodehydroascorbate, is commonly and mistakenly cited as the real product of ascorbic acid oxidation. In fact, it has been known for over 40 years that dehydroascorbate has a bicyclic hemiketal structure, and kinetic considerations suggest that it may be produced and reduced without forming pseudodehydroascorbate as an intermediate. This and other significant questions about the chemical basis of the antioxidant properties of ascorbic acid are obscured by this misconception about its oxidation product, dehydroascorbate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.013DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
20
antioxidant properties
8
properties ascorbic
8
monodehydroascorbate reacts
8
ascorbic
5
acid chemistry
4
chemistry underlying
4
underlying antioxidant
4
acid
4
acid vitamin
4

Similar Publications

A systematic study on composition and antioxidant of 6 varieties of highbush blueberries by 3 soil matrixes in China.

Food Chem

January 2025

Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, Changchun, Jilin 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China. Electronic address:

Blueberries are the most popular small berries, in order to solve the problem of unbalanced blueberry resources in different regions of China. In this study, 18 blueberries were analyzed by chromatography and mass spectrometry for 9 soil elements, 6 anthocyanins, 7 phenolic acids, 9 organic acids, and 12 flavonoids. The result showed that blueberry physico-chemical indicators were significantly variable across production regions by Wenn and volcano maps, chlorogenic acid, ascorbic acid, citric acid, catechin were the main antioxidant active components, soil pH was significantly correlated with low content of anthocyanins and organic acids, soil elements were not significantly correlated with fruits antioxidant activity by the network correlation analysis.

View Article and Find Full Text PDF

: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.

View Article and Find Full Text PDF

Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!