Individuals trained under partial reinforcement (PR) typically show a greater resistance to extinction than individuals exposed to continuous reinforcement (CR). This phenomenon is referred to as the PR extinction effect (PREE) and is interpreted as a consequence of uncertainty-induced frustration counterconditioning. In this study, we assessed the effects of PR and CR in acquisition and extinction in two strains of rats, the inbred Roman high- and low-avoidance (RHA and RLA, respectively) rats. These two strains mainly differ in the expression of anxiety, the RLA rats showing more anxiety-related behaviors (hence, more sensitive to frustration) than the RHA rats. At a neurobiological level, mild stress is known to elevate corticosterone in RLA rats and dopamine in RHA rats. We tested four groups of rats (RHA/CR, RHA/PR, RLA/CR, and RLA/PR) in two successive acquisition-extinction phases to try to consolidate the behavioral effects. Animals received training in a Pavlovian autoshaping procedure with retractable levers as the conditioned stimulus, food pellets as the unconditioned stimulus, and lever presses as the conditioned response. In Phase 1, we observed a PREE in lever pressing in both strains, but this effect was larger and longer lasting in RHA/PR than in RLA/PR rats. In Phase 2, reacquisition was fast and the PREE persisted in both strains, although the two PR groups no longer differed in lever pressing. The results are discussed in terms of frustration theory and of uncertainty-induced sensitization of dopaminergic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2020.113111DOI Listing

Publication Analysis

Top Keywords

rla rats
12
rats
9
partial reinforcement
8
inbred roman
8
roman high-
8
high- low-avoidance
8
rha rats
8
lever pressing
8
effects partial
4
reinforcement autoshaping
4

Similar Publications

The stress-induced alterations in cognitive processes and psychiatric disorders can be accelerated when acute stressors challenge the hippocampal functions. To address this issue, we used Western Blot (WB) and immunohistochemistry assays to investigate the impact of acute forced swimming (FS) on the expression of the CB1 cannabinoid receptors (CB1R) in the hippocampus (HC) of the male outbred Roman High- (RHA) and Low-Avoidance (RLA) rat lines, one of the most validated genetic models for the study of behavior related to fear/anxiety and stress-induced depression. The distinct responses to FS confirmed the different behavioral strategies displayed by the two phenotypes when exposed to stressors, with RLA and RHA rats displaying reactive vs.

View Article and Find Full Text PDF

The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia.

View Article and Find Full Text PDF

Social withdrawal in rodents is a measure of asociality, an important negative symptom of schizophrenia. The Roman high- (RHA) and low-avoidance (RLA) rat strains have been reported to exhibit differential profiles in schizophrenia-relevant behavioral phenotypes. This investigation was focused on the study of social and non-social behavior of these two rat strains following acute administration of dizocilpine (MK801, an NMDA receptor antagonist), a pharmacological model of schizophrenia-like features used to produce asociality and hyperactivity.

View Article and Find Full Text PDF
Article Synopsis
  • ADHD and substance use disorders are linked to increased impulsivity and lower brain activity in specific areas, namely the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc).
  • Researchers studied how these brain regions interact with impulsive behaviors using two types of rats: high-impulsive (RHA) and low-impulsive (RLA), measuring their brain activity and behaviors.
  • Findings revealed that activating the mPFC-NAc pathway reduced motor impulsivity in high-impulsive rats, while inhibiting it had no effect on low-impulsive rats, indicating the pathway's role is more significant in motor impulsivity than in risk-related decision-making.
View Article and Find Full Text PDF

Background: Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders, including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!