Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2020.07.013 | DOI Listing |
Bone
December 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is an increasingly recognized extra-articular manifestations (EAMs) in the RA, with highly morbidity and mortality. The identification of key molecules involved in RA-ILD has a high requirement in clinic, and the role of their transcriptional regulation in the etiology of RA-ILD is great significant for investigation. In this study, we collected the whole peripheral blood samples of RA-ILD and RA only patients to bulk RNA-sequence.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany.
In eukaryotes, accurate chromosome segregation during cell division relies on the centromeric histone H3 variant, CENH3. Our previous work identified KINETOCHORE NULL2 (αKNL2) as a plant CENH3 assembly factor, which contains a centromere-targeting motif, CENPC-k, analogous to the CENPC motif found in CENP-C. We also demonstrated that αKNL2 can bind DNA in vitro in a sequence-independent manner, without the involvement of its CENPC-k motif.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Stanford University, Stanford, California, USA.
Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!