A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Interplay between Phase Separation and Gene-Enhancer Communication: A Theoretical Study. | LitMetric

The Interplay between Phase Separation and Gene-Enhancer Communication: A Theoretical Study.

Biophys J

Dipartimento di Fisica "E.R. Caianiello" and INFN, Gruppo Collegato di Salerno, Università di Salerno, Fisciano, Italy.

Published: August 2020

The phase separation occurring in a system of mutually interacting proteins that can bind on specific sites of a chromatin fiber is investigated here. This is achieved by means of extensive molecular dynamics simulations of a simple polymer model that includes regulatory proteins as interacting spherical particles. Our interest is particularly focused on the role played by phase separation in the formation of molecule aggregates that can join distant regulatory elements, such as gene promoters and enhancers, along the DNA. We find that the overall equilibrium state of the system resulting from the mutual interplay between binding molecules and chromatin can lead, under suitable conditions that depend on molecules concentration, molecule-molecule, and molecule-DNA interactions, to the formation of phase-separated molecular clusters, allowing robust contacts between regulatory sites. Vice versa, the presence of regulatory sites can promote the phase-separation process. Different dynamical regimes can generate the enhancer-promoter contact, either by cluster nucleation at binding sites or by bulk spontaneous formation of the mediating cluster to which binding sites are successively attracted. The possibility that such processes can explain experimental live-cell imaging data measuring distances between regulatory sites during time is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451901PMC
http://dx.doi.org/10.1016/j.bpj.2020.07.007DOI Listing

Publication Analysis

Top Keywords

phase separation
12
regulatory sites
12
binding sites
8
sites
6
regulatory
5
interplay phase
4
separation gene-enhancer
4
gene-enhancer communication
4
communication theoretical
4
theoretical study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!