Cold-inducible RNA-binding protein (CIRP) was previously identified as an intracellular stress-response protein, which can respond to a variety of stress conditions by changing its expression and regulating mRNA stability through its binding site on the 3'-UTR of its targeted mRNAs. Recently, extracellular CIRP (eCIRP) was discovered to be present in various inflammatory conditions and could act as a pro-inflammatory factor. Genetic studies have demonstrated a key role for eCIRP in inflammatory conditions that led to the importance of targeting eCIRP in these diseases. Currently, the underlying mechanism of eCIRP-induced inflammation is under intensive investigation and several signalling pathways are being explored. Here, we epitomized various signalling pathways that mediate the pro-inflammatory effects of CIRP and also recapitulated all the CIRP-derived peptides that can block the interaction between CIRP and its receptors in inflammatory setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/sji.12949 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!