Crimean-Congo haemorrhagic fever virus (CCHFV) is the causative agent of the severe tick-borne, often fatal, zoonotic Crimean-Congo haemorrhagic fever (CCHF), which is widely distributed worldwide. The CCHFV transmission to humans occurs through tick bite, crushing of engorged ticks or contact with infected host blood. Previously, CCHFV genotype Africa III was reported in Spain. Given the emergence of CCHF and the role of ticks in pathogen maintenance and transmission, we investigated the presence and genotype identity of the virus in tick species parasitizing abundant wild host species in south-western Spain. A total of 613 adult ticks were collected from hunter-harvested wild ungulates in twenty locations throughout south-western Spain. Ticks were identified, nucleic acids were extracted, RNA was analysed by a nested RT-PCR targeting CCHFV S segment, and the amplicons were sequenced. According to the 212-bp sequence amplified, the presence of CCHFV human genotype Europe V was detected in Hyalomma lusitanicum and Dermacentor marginatus ticks collected from red deer, fallow deer and Eurasian wild boar in different locations from south-western Spain. Genotype Africa IV was also detected in a H. lusitanicum tick collected from a red deer. The detection of CCHFV in different tick species collected from various wild hosts and localities provided strong evidence of widespread CCHFV presence in the region, suggesting that the circulation of the virus in Spain requires more attention. Additionally, the identification of the CCHFV genotype Europe V in ticks suggested that its introduction in Spain was probably from Eastern Europe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tbed.13756 | DOI Listing |
Travel Med Infect Dis
January 2025
National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain; Universidad de Alcalá, Madrid, Spain.
Background: The World Health Organization has identified Crimean-Congo hemorrhagic fever (CCHF) as a priority disease for research and development in emergency contexts. The epidemiology of CCHF is evolving and this review highlights travel-associated cases and focuses on the need for a One Health approach in Europe.
Methods: For this narrative review, two searches were performed in PubMed and Google Scholar for the period 1980-October 2024.
J Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFViruses
December 2024
Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.
View Article and Find Full Text PDFPathogens
January 2025
Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy.
The rise and resurgence of vector-borne diseases (VBDs) in Europe pose an expanding public health challenge, exacerbated by climate change, globalization, and ecological disruptions. Both arthropod-borne viruses (arboviruses) transmitted by ticks such as Crimean-Congo hemorrhagic fever and arboviruses transmitted by mosquitoes like dengue, Chikungunya, Zika, and Japanese encephalitis have broadened their distribution due to rising temperatures, changes in rainfall, and increased human mobility. By emphasizing the importance of interconnected human, animal, and environmental health, integrated One Health strategies are crucial in addressing this complex issue.
View Article and Find Full Text PDFPathogens
December 2024
Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece.
Ticks are temporary ectoparasites that serve as vectors for a wide range of pathogens affecting both wildlife and humans. In Greece, research on the prevalence of tick-borne pathogens in wildlife is limited. This study investigates the presence of pathogens, including spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!